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Look before you leap and don’t
put all your eggs in one basket

The need for caution and prudence in quantitative

data analysis
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Abstract This paper’s aim is to draw attention to the pitfalls that novice and,

sometimes, experienced researchers fall into when undertaking quantitative data

analysis in the health and social sciences, and to offer some guidance as to how such

pitfalls might be avoided.

Many health and social science students are routinely instructed that the procedure

for undertaking data analysis in quantitative research is as follows: specify

hypotheses; collect data and enter it into a computerised statistical package; run

various statistical procedures; examine the computer outputs for p-values that are

statistically significant. If significant differences are found, jubilation often exists

because statistically significant results are deemed to be a clear indicator that

something worthwhile (and publishable) has been discovered. This paper argues that

this approach has two major oversights: a failure to explore the raw data prior to

analysis and an overdependence on p-values. Both of these oversights are routinely

present in much health and social-science research, and both create problems for

scientific rigour.

Researchers need to exercise caution (‘look before you leap’) and prudence

(‘don’t put all your eggs in one basket’) when undertaking quantitative data analyses.

Caution demands that, prior to full data analysis, researchers employ procedures such

as data cleaning, data screening and exploratory data analysis. Prudence demands that

researchers see p-values for their true worth, which exists only within the context of

statistical theory, confidence intervals, effect sizes and the absolute meaning of

statistical significance.
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Introduction
In many health and social science departments, students are routinely instructed that

the procedure for undertaking quantitative research that involves a degree of statisti-

cal analysis is as follows: firstly, a priori hypotheses are specified; then the data are

collected and entered into a computerised statistical package such as SPSS (see SPSS

Inc., 2005) or SAS (see SAS Institute, 2005); various statistical procedures are run;

and, lastly, the outputs of these procedures are examined for p-values that are statisti-

cally significant at, at least, the 5% level. On finding significant differences between

group means (for comparative studies) or on finding correlations that are signifi-

cantly different from zero (for relational studies), jubilation often exists among

researchers because statistically significant results are — so they are taught — a clear

indicator that something worthwhile (and publishable) has, indeed, been discovered.

Two common oversights, however, are evident in this rather mechanistic

approach to data analysis: a lack of exploration of the raw data prior to analysis and an

overdependence on p-values. Both of these oversights create problems for scientific

rigour: a lack of exploration of the raw data prior to analysis means that important

trends in the data may be missed or inappropriate statistical tests used; an overdepen-

dence on p-values means that credit might be given to findings where credit is not

necessarily due. These two oversights form the focus of this paper.

Data cleaning, data screening and exploratory data analysis
Examining and exploring the raw data prior to any higher-level analyses serves two

principal purposes: it ensures the integrity of the data and it helps the researcher to

become acquainted with the data. With regard to the integrity of the data, the examina-

tion and exploration of raw data introduces a degree of audit into the data-analysis

process in that it can to help correct some of the errors that arise during the data collec-

tion, tabulation and entry phases. Because initial versions of datasets inevitably contain

errors, these datasets are often called ‘dirty’ (Babbie, 2001), and the process of dealing

with such dirty datasets is often, unsurprisingly, referred to as ‘data cleaning’.

A number of measures are available to help clean datasets. If sufficient resources

are available, a precursory measure might be to create two separate first-stage

datasets from two independent entries of the same raw dataset, comparing the two

first-stage datasets for differences. This ‘double-entry’ measure deals with direct data-

entry errors, whether human (such as an erroneous keystroke) or mechanical (such

as an optical scanner misread). If resources are limited, an alternative is to subject a

single first-stage dataset to a random 10% check (NCS Pearson Inc., 2004) — in

other words, 10% of the cases under investigation are randomly selected, the data

recorded in the first-stage dataset being checked carefully against the raw data relat-

ing to each case. An additional data-cleaning measure is to undertake a frequency

analysis of each of the variables in the first-stage dataset in order to check that the

values for each of the variables are in the acceptable (expected, valid) range (Barhyte

and Bacon, 1985; Babbie, 2001; NCS Pearson Inc., 2004). Indeed, when using com-

puterised packages like SPSS and SAS, this measure is so quick and easy that it should

be considered routine.

There are numerous criticisms in the literature (see, for example, Afifi and Clark,

1996; Howell, 1997; Wilkinson and the Task Force on Statistical Inference, 1999;

Burns and Grove, 2001) regarding the ritual of plunging straight into complex data
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analyses without first becoming familiar with the data. This is where data screening

comes into play: once researchers are reasonably certain that the data are clean, they

should familiarise themselves with the data via the process that is central to data

screening, ‘exploratory data analysis’ (EDA). (Calls for the routine use of EDA go

back at least three decades — see, for example, Tukey (1977) — yet EDA is still

rarely reported in research reports. Its omission may well be down to a lack of use by

researchers, but it is worth bearing in mind that the pressures on space in the acade-

mic journals may be an added complication in the continuation of its absence.) Much

of EDA involves the plotting and examination of graphical devices such as his-

tograms, scatterplots, boxplots (box-and-whisker plots) and stem-and-leaf plots. This

process helps the researcher to get a feel for the variables under investigation, such as

the general shape of a variable’s distribution or any notable peculiarities in the data.

EDA can also help to check for violations of the assumptions that underpin specific

statistical analyses (Afifi and Clark, 1996; Howell, 1997).

EDA and peculiarities in the data
Specific peculiarities that researchers need to be on the lookout for include missing data

and outliers. Problems can arise if a particular variable has a high proportion of

missing responses or values. Afifi and Clark (1996) suggest that variables with a high

proportion of missing responses should be deleted and that cases that have missing

responses to particular variables should be excluded from analyses involving those

variables. Thus, a missing data analysis (or ‘missing value analysis’ as some comput-

erised packages call it) should be the first stage of EDA.

Outliers — extreme values for a particular variable — are perhaps more problem-

atic than missing data because the influence that outliers can have on the results of

analyses is rather more subtle. Outliers can substantially affect the results of statistical

analyses (Afifi and Clark, 1996; Howell, 1997; Wilkinson and the Task Force on Sta-

tistical Inference, 1999; High, 2000; Hopkins, 2002). High (2000), for instance,

notes that outliers can lead to biased population estimates, inflated sums of squares,

distorted p-values and faulty, even false, conclusions. Sometimes outliers result

simply from errors of the data-entry process (in which case, they can be picked up

via the data-cleaning process and corrected); on other occasions, they are real, but

extreme, values.

A standard approach to the identification of outliers in a univariate distribution

(i.e. a single-variable distribution, such as the distribution of the dependent variable,

Y, in a comparative research design where the groups being compared are categories

of the independent variable, X) is to use the boxplots and stem-and-leaf plots of EDA

(Tukey 1977; Afifi and Clark, 1996; Howell, 1997; Burns and Grove, 2001). There

is little excuse for not doing this as most computerised statistical packages produce

these plots with relative ease. Outliers are relatively easy to spot from a quick visual

inspection of these plots. The situation regarding outliers gets more complex for rela-

tional research designs (designs employing correlation and regression) as these

designs employ bi- or multivariate distributions. Afifi and Clark (1996) argue,

however, that extreme values on both the X and the Y variables (for bivariate distribu-

tions) or on any or all of the X variables (X1, X2, X3 . . . Xi) as well as the Y variable (for

multivariate distributions) are far more worrying than outliers on solely the X or Y

variables. One of the easiest ways of identifying these so-called ‘influential points’ is

to examine a statistic known as Cook’s D (both SPSS and SAS will calculate this on
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request) and look for responses where D > 1.00 (Howell, 1997; Montgomery et al.,

2001).

While the identification of outliers and influential points is reasonably straight-

forward, dealing with them is another matter — especially since there is no clear-cut

answer in the literature on what to do with outliers and influential points once iden-

tified. A common recommendation (see, for example, Afifi and Clark, 1996; Howell,

1997) is to run the analysis twice: on the full dataset and on the dataset with any

outliers and/or influential points removed. In these circumstances, both sets of

results need to be presented. However, it is extraordinarily rare see any discussion of

outliers and influential points in the empirical health and social science literature, let

alone see two sets of results (full dataset vs. outliers removed).

EDA and the assumptions underlying statistical tests
The choice of statistical procedure or test within a specific research design is depen-

dent on several factors. For a start, whether comparisons or relationships between variables

are being examined will have a bearing on the choice of test, as will the type of vari-

able (e.g. categorical vs. scale) and the number of variables being studied. Flow-

charts, decision trees and tables aiding the choice of test abound in the literature

(see, for example, Burns and Grove, 2001; Hawkins, 2005), and it is rare for the

experienced researcher to choose a wholly inappropriate test. There is some contro-

versy, however, in choosing between parametric and non-parametric tests (see, for

example, MacDonald 1999), although there is still a general consensus that paramet-

ric tests are superior to non-parametric tests, and that they should be employed in

preference to non-parametric procedures unless there are strong reasons for not

doing so (Howell, 1997; Hopkins, 2004). ‘Strong reasons for not doing so’ may,

indeed, be the very crux of the controversy. One purportedly strong reason for

employing non-parametric tests is that they can provide straightforward and rela-

tively quick answers. However, these answers are provided at the expense of preci-

sion, and they are quick only with relatively small sample sizes. With large sample

sizes, non-parametric tests are difficult to compute, although recent (and future)

advances in high-powered computing are likely to change this position (to the extent

that ‘quick’ may need to be redefined). Another strong reason for preferring non-

parametric tests is that real-life populations are very often not normally distributed

(Micceri, 1989). In all, it may be that the parametric/non-parametric debate is

somewhat artificial and, as such, the advice of Wilkinson and the Task Force on Sta-

tistical Inference (1999) to choose a minimally sufficient analysis (i.e. avoid complex

procedures when simples ones will do) is eminently sensible advice.

Still, the point remains that if parametric procedures are to be employed, then

researchers must ensure that the underlying assumptions of each test are adhered to.

Perhaps the strongest reason for not employing a parametric procedure is having data

that are incompatible with the underlying assumptions of the particular test. EDA has

a particularly useful place in checking the compatibility of the data against the under-

lying assumptions of a specific statistical test, as will become apparent in the ensuing

discussion on the two main statistical approaches in the health and social sciences.

The comparative approach includes parametric procedures such as the t-test and analysis

of variance (ANOVA), as well as non-parametric procedures such as the

Mann–Whitney and Kruskal–Wallis tests, and is concerned with differences on one

or more dependent variables, Y1, Y2, Y3, etc., across the categories of some independent
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variable, X (one-way analysis), or group of variables, X1, X2, X3, etc. (two-way, three-

way analysis, etc.). The relational approach includes procedures such as correlation and

regression, and is concerned with the relationship between a pair of variables, X and Y,

or between Y and a number of (independent) variables, X1, X2, X3 . . . Xi.

Assumptions underlying parametric test of comparison
Although non-parametric procedures are not entirely without underlying assump-

tions (both the Mann–Whitney and Kruskal–Wallis tests require distributions with

similar shapes, for example), the prerequisites for parametric procedures are gener-

ally more exacting. For tests such as the t-test and ANOVA, there are three main

assumptions about the distributions being compared that need to be met. First, these

tests assume that the distributions being compared are normal and one of the best

ways to check for normality is to visually examine the plots produced by the EDA

functions in the computerised statistical packages (Howell, 1997; Wilkinson and the

Task Force on Statistical Inference, 1999). The distributions do not have to be

absolutely normal: the t-test is robust, and relatively minor deviations from normal-

ity do not appear to influence the results unduly (Afifi and Clark, 1996; Howell

1997). ANOVA can similarly cope with deviations from normality as long as the dis-

tributions being compared are similar in shape (Howell, 1997).

The second assumption of these tests is that the variances of the distributions

being compared are roughly equal. This ‘homogeneity of variance’ assumption is not

a great problem with the t-test as most computerised statistical packages output two

results: one for homogeneous variances and an adjusted result where heterogeneous

variances are evident (whether or not the variance is homogeneous can be gleaned

from the Levene test, included in the output from most of the statistical packages).

With ANOVA, Howell (1997) argues that heterogeneous variances are not particu-

larly problematic as long as the groups being compared have roughly equal sample

sizes (as with the t-test, homogeneity of variance can be checked via the Levene test).

Howell adds, however, that an ANOVA with unequal sample sizes together with

heterogeneous variances produces a serious violation of the underlying assumptions

and any results obtained will be suspect. In these circumstances, transformations of

the dependent variable(s) to a form that yields homogenous variances should be con-

sidered (Howell, 1997). Alternatively, a non-parametric test such as the

Kruskal–Wallis test can be employed.

An additional assumption concerns the independence of observations, i.e. whether the

observations in one of the comparison groups (the categories of the independent

variable) are influenced by observations in any or all of the other comparison groups.

Afifi and Clark (1996) argue that when data are collected from people (as they often

are in health and social science research), it is frequently safe to assume independ-

ence of observations collected from different people. The only potential problem

arises when repeated measures are employed; however, given that specific versions of

the t-test and ANOVA exist for repeated measures designs, the independence of

observations is rarely a problem in health and social science research.

Assumptions underlying parametric tests of relationship
The main statistical approaches available when exploring relationships between vari-

ables are correlation and regression. Correlation is a measure of the relationship

between two variables, X and Y; regression (a closely related technique) is concerned
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with how one variable, the dependent variable (Y), might be predicted from one or

more independent (X) variables. Correlation and (linear) regression scenarios in the

health and social sciences are typically subject to three basic assumptions (Afifi and

Clark, 1996; Howell, 1997). The first assumption concerns ‘linearity’: when corre-

lating two variables, X and Y, or using regression to predict Y from any number of X

variables, there is an assumption that the relationship between the X variable(s) and Y

is linear, i.e. it can be represented graphically by a straight line. The second assump-

tion concerns normality. This assumption is analogous to the normality assumption

in the comparative approach, although different normality assumptions exist depend-

ing on whether a ‘fixed-X’ or ‘variable-X’ model is employed (the distinction

between the two lies in whether the researcher fixes the values of the X variable(s)

prior to data collection). In the variable-X scenario, the normality assumption is that

the data to be analysed are taken from the bivariate (X, Y) normal distribution or, in

the case of multiple regression, from the multivariate (X1, X2, X3 . . . Xi, Y) normal

distribution. In the fixed-X scenario, it is the ‘conditional distribution(s)’ of Y (the

distribution(s) of Y for specific values of Xi) that need to be normal. The third

assumption is that of ‘homoscedasticity’, or a similarity in ‘scatteredness’.

Homoscedasticity exists where the variances for each value of Xi are similar (cf.

homogeneity of variance with the comparative approach).

Checking these assumptions can be tricky, especially when complex correlation

and regression models are employed, although some relatively simple checks are

available for straightforward bivariate correlation. For example, linearity and bivari-

ate normality can be checked by visually inspecting the EDA scatterplot of X against Y

and looking for a roughly elliptical shape (Afifi and Clark, 1996; Howell, 1997).

Furthermore, in most health and social science scenarios, homoscedasticity is rarely a

problem if bivariate or multivariate normality is demonstrated (Afifi and Clark,

1996). Using scatterplots to check for linearity and normality is extraordinarily diffi-

cult in multivariate scenarios, however, as employing more than two independent

(X) variables requires an ability to visualise in four or more dimensions.

Where violations of the assumptions for bivariate correlation are evident, non-

parametric procedures such as Spearman’s R or Kendall’s _ should be used in prefer-

ence to the parametric Pearson r. It is worth noting, however, that meeting the

underlying assumptions for correlation are only important if the procedure is being

used to make inferences about some target population on the basis of a discrete sample.

If the purpose of the correlation is merely to describe some quality of the sample, the

assumptions do not need to be met (Cohen, 1988; Howell, 1997).

Where there are doubts about whether the data collected will meet the assump-

tions that underlie a specific multivariate correlation or regression procedure, a prag-

matic resolution might be to employ a procedure requiring fewer assumptions, or

one where specific assumptions do not matter. For example, logistic regression

(where the dependent variable, Y, is predicted from a sigmoid curve rather than a

straight line) has advantages over linear regression in that it can handle categorical

independent (X) variables and in that neither normality nor homoscedasticity are

issues (Hosmer and Lemeshow, 1989; Afifi and Clark, 1996; Garson, 1999). There is

always a trade-off with pragmatism, however, and with logistic regression, it mani-

fests with the necessity of having a dichotomous dependent (Y) variable.

A more important issue to be aware of in any multivariate regression procedure,

however, is that of ‘multicollinearity’. Multicollinearity occurs when several of the

independent variables are highly intercorrelated (Rawlings et al., 1988; Hosmer and
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Lemeshow, 1989; Afifi and Clark, 1996; Garson, 1999; Montgomery et al., 2001). In

linear regression, multicollinearity can be identified by a statistic called the ‘variance

inflation factor’ (VIF), or by its inverse, known as ‘tolerance’ (again, most comput-

erised statistical packages produce these statistics with relative ease). For any particu-

lar independent variable, high VIF/low tolerance values imply that that variable can

itself be predicted from one or more of the other independent variables in the regres-

sion equation. VIF is typically seen as being high when it exceeds a value of 10.0

(Rawlings et al., 1988; Montgomery et al., 2001) and, in these circumstances, the vari-

able should be considered for removal from the equation (Afifi and Clark, 1996).

Although multicollinearity is as much an issue in non-linear regression as it is in

linear regression, there are, unfortunately, no established procedures for identifying

VIF and tolerance in non-linear models (Afifi and Clark, 1996; Garson, 1999).

Confidence intervals, effect sizes and the meaning of
significance
At this point, the reader should be aware of how the robustness of any proposed data

analyses can be improved via some simple preparatory processes (involving the con-

ventions of EDA together with a few additional procedures, all of which are well

within the capabilities of most computerised statistical packages). It is pointless

having robust analyses, however, if the results of those analyses are reported in a rit-

ualistic manner that fails to acknowledge the debate surrounding the meaning and

interpretation of statistical test results or if the results are detached from the philo-

sophical context in which they are set. This debate is far from recent (see Cohen,

1994) yet, despite many decades of criticism, null-hypothesis significance testing

and the associated fixation with p-values — particularly the notion of significance at

the 5% level — still feature heavily in the health and social science literature. The

problem with the p-value approach is that it merely tells the individual that the two

(or more) means are not the same. As Cohen (1994) points out, differences among

groups always exist at some level of precision: attaining statistical significance is

merely a matter of sample size. With large sample sizes, very small differences may

be statistically significant but have little real clinical or practical importance. Indeed,

Cohen has noted that very small, yet statistically significant, differences have erro-

neously led to the establishment of theory. Moreover, the logic of the scientific

method implies that the results of statistical testing can only have meaning if a priori

hypotheses have been established. Such hypotheses guide the researcher and help

maintain objectivity; without them, the search for Truth becomes a haphazard data

trawl and scientific rigour falters.

Many disciplines have moved to address the widespread overdependence on p-

values, with alternatives such as confidence intervals, decision theory or Bayesian

approaches being proposed (Bailar and Mosteller, 1988; Johnson, 1999; Wilkinson

and the Task Force on Statistical Inference, 1999). It is beyond the scope of this

paper to discuss each of these alternatives in detail, but the calls from the medical and

psychological professions (Bailar and Mosteller and Wilkinson et al., respectively) are

perhaps the most relevant to health and social science researchers. To address the

widespread overdependence on p-values, medicine and psychology recommend that

alpha-values (the threshold at which statistical significance is accepted, e.g. for 5%

significance, � = 0.05) be adjusted to take account of the sample size, that confidence

intervals be employed as an adjunct to (or, indeed, instead of) p-values and that
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effect sizes be routinely reported alongside the test statistics and corresponding p-

values.

With regard to adjusting _ to account for sample size, a protocol that deals with

this in an indirect yet pragmatic manner is for researchers to report the actual 

p-values rather than use asterisks or the generic ‘p < 0.05’ to mark significance and 

‘p > 0.05’ or the ubiquitous ‘NS’ to mark non-significance. Presenting the actual p-

value together with the sample size gives readers of a research report the opportunity

to make up their own minds about appropriate alpha-values. Reaching statistical sig-

nificance should be seen as a starting point for discussing potentially interesting results

rather than as an absolute indication of discovery.

Confidence intervals
The confidence interval (CI) is the range of observations in which a researcher can be

certain that the true mean of population lies, delimited by an upper and a lower

‘confidence limit’. Confidence limits of 95% is the normal convention: this means

that, for a given variable, the researcher can be 95% confident that the true popu-

lation mean will lie somewhere between the upper and lower confidence limits. The

utility of CIs is two-fold. First, when a specific variable is being compared across two

or more groups, plotting the variable’s CI for each of the groups side-by-side can

give an almost immediate visual indication of whether there is a difference between

the groups (in most cases, the respective CIs do not overlap). For example, in the

hypothetical scenario contained in Figure 1, group A’s CI does not overlap with the

CI of either group B or group C. Given that there is an overlap between the CIs of

groups B and C, the implication is that group A is (significantly) different from

groups B and C on activity scores, and that groups B and C do not differ significantly

from each other. On the other hand, if only the means were plotted, then it would

24

23

22

21

20

19

22.6

20.09

19.9

A
(n � 314)

B
(n � 147)

C
(n � 351)

M
ea

n 
ac

tiv
ity

 s
co

re

Figure 1 Mean hypothetical ‘activity’ scores (with 95% confidence intervals) for three

groups.
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be understandable if the observer thought that there might also be a difference

between group B and group C.

An additional utility of CIs occurs when CIs for the difference between two means is

calculated. Such a CI can act as an adjunct — if not an alternative — to significance

testing in that, if the CI for the difference between two means spans zero, then the

difference will not be statistically significant. To put it another way, the researcher

cannot be confident that there is a difference between the means.

Effect size
Effect size (ES) statistics are important because they give an indication of something

that has rarely been reported in empirical studies — the magnitude of the effect (or dif-

ference) found. The use of ES statistics can guard against Cohen’s complaint that very

small, yet statistically significant, differences are often implicated in the establish-

ment of theory. They can also help practitioners and researchers in the health and

social sciences to understand the importance of the debate regarding clinical vs. sta-

tistical significance (see, for example, Ottenbacher, 1995) in that very small effect

sizes (clinical insignificance) often accompany p-values much smaller than 0.05 (sta-

tistical significance), especially when large sample sizes are present.

Wilkinson and the Task Force on Statistical Inference (1999) argue that effect sizes

should be routinely reported alongside statistically significant findings. A number of

effect sizes (ES) statistics are available, depending in the statistical test employed

(Table 1).

The three effect size thresholds listed in Table 1 give an indication of the values

required for an effect (difference or relationship) to be qualitatively described as

‘small’, ‘medium’ or ‘large’ (these figures are often used in power/sample size calcu-

lations when researchers have no a priori effect sizes available) . Two threshold sets

are quoted for Cohen’s d (a standardised measure of the magnitude of the difference

between two means) mainly because Hopkins (2004) argues that Cohen’s values are

too low to define the thresholds for medium and large effects. Hopkins also chal-

lenges the utility of a three-descriptor effect size ‘scale’, preferring instead to think of

a seven-descriptor scale (trivial–small–moderate–large–very large–nearly

perfect–perfect), ranging from zero (trivial) to one (perfect) for r, from zero (trivial)

to infinity (perfect) for d and from one (trivial) to infinity (perfect) for relative risk

and the odds ratio. The odds ratio (the exponential of the logistic regression coeffi-

cient, B) for a specific predictor (i.e. independent) variable is the factor by which the

odds of being in the disease-present category of the dependent variable (as opposed

to the disease-absent category) increase as the scores on the predictor variable rise by

TTaabbllee  11 Small, medium and large effects for typical statistical procedures (after Hopkins,

2000).

Effect size measure Effect size thresholds

Small Medium Large

Correlation coefficient, r 0.10 0.30 0.50

Cohen’s d (Cohen, 1988) 0.20 0.50 0.80

Cohen’s d (Hopkins, 2000) 0.20 0.60 1.20

Relative risk 1.2 1.9 3.0

Odds ratio (risk) 1.5 3.5 9.0
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one unit. Thus if the odds ratio = 5 for a particular predictor, a one unit increase on

that predictor means that the odds of having the disease increase five-fold. An odds

ratio = 0.50 means the odds of having the disease halve or, conversely, the odds of

not having the disease double. An odds ratio = 1.00 means no change as the scores

on the predictor increase or decrease (hence Hopkins’ descriptor of ‘trivial’ for an

odds ratio = 1). When CIs are presented for an odds ratio, a CI that includes the

value of 1.00 suggests a nil effect in the same way that there is a nil effect when the

CI for the difference between two means includes zero.

Both Cohen and Hopkins also talk about the use of ‘variance explained’ (a

measure with a range of 0% to 100%) as an additional or alternative ES measure in

statistical procedures, like regression and ANOVA, where variance or the sum-of-the-

squares are central concepts. Thus, R2 is often used as an ES measure in multivariate

regression, r2 as an ES measure in bivariate regression and eta-squared (�2) and

omega-squared (�2) as ES measures in ANOVA. In logistic regression, where no true

R2 is available, ‘pseudo’ R2 measures such as the Nagelkerke R2 have been developed,

although the odds ratio is a suitable alternative.

Conclusion: a robust procedure
To summarise, when undertaking quantitative research, a robust data-analysis pro-

cedure has the following essential elements. First, hypotheses need to be set and suit-

able data collected. The raw dataset collected then needs to be cleaned, after which

exploratory data analysis should be employed to screen the data both for peculiarities

(outliers and missing data) and the extent to which the variables under investigation

are concordant with the underlying assumptions of the statistical procedures pro-

posed. Where peculiarities exist or violations of the underlying assumptions are iden-

tified, appropriate remedial action should be taken: running a double set of analyses

(full dataset vs. outliers removed) or utilising transformed variables or non-paramet-

ric procedures, for example. Following analysis of the data, readily obtainable mea-

sures such as sample size, confidence intervals and effect size should be routinely

reported, certainly as an adjunct, perhaps even as an alternative, to the conventional

coupling of a single test-specific statistic with its p-value (and where p-values are

reported, these should be the actual p-values).

The procedure does not stop here, however. Any findings need to be put into

context — in other words, interpreted — and further pitfalls arise at this stage. Even if

the analytical and theoretical procedures are rigorous and the researcher has stumbled

upon something interesting in relation to a specific hypothesis (a moderate-to-large

effect size, a small confidence interval that does not cross zero, tiny p-values and an

appropriate sample size), there is still no guarantee of discovery. Before the

researcher can be reasonably confident of discovery, there is a need for consistency,

both within the investigation itself and with the wider body of research in the same

area. Fenwick (1997) points out this need for consistency and the danger of relying

on isolated studies in advising his readers to ‘treat new study reports as what they are

. . . a first impression. If the topic interests you, watch for future developments and,

unless they’re consistent, you can probably safely ignore them’ (Fenwick, 1997:

226).

In the search for Truth, quantitative methods can be powerful tools. However, as

with any tool, those using such methods need to be aware of not only their strengths

and advantages but also their potential dangers and limitations.
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Key points
• The routine, mechanistic approach to quantitative data analysis taught in

many health and social science departments creates problems for scient-

ific rigour.

• Failure to explore the raw data prior to analysis means important trends

in the data may be missed or inappropriate statistical tests used.

• An overdependence on p-values means that credit can be given to find-

ings where credit is not necessarily due.

• A systematic approach to quantitative data analysis involving data clean-

ing, data screening and exploratory data analysis helps increase scientific

rigour.

• The use of confidence intervals and effect size statistics as adjuncts to the

p-value improves the credibility and weight of any findings.
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